
Computer-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Computer-Assisted Language Comparison in Practice
Volume 8, Number 2
URL: https://calc.hypotheses.org/8877 DOI: 10.15475/calcip.2025.2.4
Published under a Creative Commons Attributions 4.0 LICENSE
Published on 28/10/2025

Manipulating Lexical
Forms with the
PyLexibank FormSpec
Johann-Mattis List
Chair for Multilingual Computational Linguistics
University of Passau

Multilingual lexical data is typically stored in a wide variety of forms, based on many
idiosyncratic decisions that vary from dataset to dataset. Here, a simple but efficient
solution for the manipulation of lexical data in multilingual wordlists will be introduced.
This solution, the PyLexibank FormSpec, was originall developed for the conversion of
various kinds of lexical data to Cross-Linguistic Data Formats, but it can also be used as
a standalone. This study offers a basic tutorial that illustrates how the FormSpec can be
put to concrete use.

1 Introduction

When working with lexical data in multilingual settings, one encounters a huge variety
of ways in which similar kinds of information about lexical forms are encoded. While
handling such cases may often require targeted solutions that may in the worst case
consist in manual corrections of individual data points, our work with the Lexibank
repository (List et al. 2022) has also allowed us to detect certain recurring idiosyncracies
in lexical data that can be handled with unified approaches. These approaches have been
integrated into the PyLexibank software package (Forkel et al. 2021) and provide
important help in converting various kinds of cross-linguistic data with lexical forms to
Cross-Linguistic Data Formats (Forkel et al. 2018).
In this small study, I will introduce one particular solution that deals with lexical

forms before their conversion to phonetic transcriptions. This solutions, as simple as it
may seem, has helped us a lot in constructing the Lexibank repository that by now
aggregates standardized data from more than 120 different datasets (Blum et al. 2025).

https://doi.org/10.15475/calcip.2025.2.4
https://calc.hypotheses.org/8877


CALCiP Volume 8, Number 2

88

2 Background

While the basic information that scholars want to provide in a dictionary or a wordlist
can be described in pretty simple and straightforward terms, the techniques that scholars
use in order to mark this kind of information in concrete datasets vary greatly. While
the major information that we need to provide when listing word forms in a given
language consists in a triple of language, form, and meaning (List 2014; Gévaudan
2007), linguistic practice adds various forms of complexity and inconsistency to this
triple structure. Language names are rarely used in a standardized form, making it at
times difficult to identify the varieties in question. Short glosses used to represent
meanings are often highly idiosyncratic and can at times only be understood from the
larger context of the concept list in which they are assembled (List, Cysouw, and Forkel
2016). Forms are given in a mix of transcriptions, orthographic information, often
expanded by additional information that can often only be understood when taking
detailed contextual information into account.
As an example, consider cases where data are given in tabular form, where columns

represent languages and rows represent meanings, and word forms are placed into the
respective cells. This format can be found in numerous publications and is considered
some kind of a standard among many linguists. The problem of the format is, that it
invites inconsistencies regarding the representation of the lexical forms. These
inconsistencies surface in numerous occasions. Thus, if more than one word is found to
express a given meaning in a given language, scholars use various ways to code for this,
using characters like comman, semicolon, or slash as a delimiter when listing multipel
word forms, with many datasets using different delimiters without any clear semantics
attached to them. Another problem consists in the use of brackets, which are also used
in multiple variants, ranging from square brackets over normal brackets to curly braces.
Here again, semantics of bracket use are rarely consistent, ranging from reading variants
over pronunciation differences to metainformation that relates to the language or the
concept in question rather than to the word form itself. An additional problem consists
in the explicit marking of missing data, which varies also greatly, ranging from empty
cells over dashes invarious forms to explicit entries, such as “no data” or “missing
entry”.
While inconsistencies may seem to be unproblematic when inspecting data directly

by eyeballing them, they may cause huge problems when trying to digest data with the
computer. If missing data is marked by an entry “no entry”, for example, it can easily
occur that this entry will make its way into the final database, leading to the false
impression that the word for “apple” in some language variety is “no entry” instead of
being simply missing from the record.



List PyLexibank FormSpec

89

The problems arising from variation in lexical entries in cross-linguistic datasets may
not only sound funny but also evitable. One would expect computationally versed
people to be able to spot or predict such problems when trying to convert a dataset to
some standardized format. When dealing with idiosyncrasies of individual data,
however, it is helpful to make use of some standardized routines that help to solve
problems that often recur across different datasets in a unified way.
3 Getting Started with the PyLexibank FormSpec

When developing the framework that would later be used to feed the Lexibank
repository with data (Blum et al. 2025; List et al. 2022), we started out with individual
solutions to deal with inconsistencies in lexical entries. Lexical entries were thus dealt
with on a case-to-case basis, using standard routines for text manipulation offered by
Python. When adding more data, however, we began to realize that certain problems
with lexical forms would recur with a certain regularity. Entries for missing data would
be marked idiosyncratically, multiple forms within the same cell would be separated
with different separation symbols, and brackets would force us to apply at times quite
complex regular expressions.
In order to address these problems, a new functionality to handle lexical forms

flexibly in a unified way was added to PyLexibank (Forkel et al. 2021), the library that
we used to convert data that we would obtain in raw form from published resources into
Cross-Linguistic Data Formats (Forkel et al. 2018). This FormSpec, as it is called in
PyLexibank, addresses the three major problems summarized above. It deals with
brackets (preferably removing everything that is inside a bracket, given that both
additional morphemes and meta-information can both not be reliably interpreted when
standardizing a form entry). It deals with separators used to describe several variants
within the same cell of a data entry. Finally, it also deals with missing data, allowing
users to provide a list of the symbol combinations used to indicate that a cell contains
no data. Additionally, the FormSpec provides some basic cleaning operations of lexical
forms, stripping certain characters from the form and applying standard Unicode
normalization (Moran and Cysouw 2018: 17).
While the FormSpec is automatically applied whenever you use CLDFBench (Forkel

and List 2020) and PyLexibank to create a CLDF dataset, you can also test its
functionality directly in an interactive Python session. In order to get started, all you
need is a fresh installation of the PyLexibank package, which you can easily obtain with
the help of the Python package index pip.
$ pip install pylexibank



CALCiP Volume 8, Number 2

90

Equipped in this form, all you need to load the FormSpec is to import it from your
interactive Python session or from within a Python script.
from pylexibank import FormSpec

In order to use the FormSpec, you must initialize it first. This means, you predefine
its behavior in cleaning a given lexical form. The call signature of the class is as shown
below.
class FormSpec(builtins.object)
| FormSpec(
| brackets={'(': ')'},
| separators=(';', '/', ','),
| missing_data=('?', '-'),
| strip_inside_brackets=True,
| replacements=NOTHING,
| first_form_only=False,
| normalize_whitespace=True,
| normalize_unicode=None
| ) -> None

We define pairs of brackets by means of a dictionary in which the key is the opening
bracket and the value is the closing bracket. This would not work with cases where a
bracket is defined by the same start and end symbol, but our experience shows that most
datasets would use traditional brackets for which start and end symbols are defined. The
separators handle multiple forms for the same concept. Missing data are passed as a list
(or more strictly speaking, a tuple, according to the call, but a list will also be accepted).
If the option strip_inside_brackets is set to True, this means that the
algorithm deletes content inside brackets. With respect to the order of execution, note
that in cases where a separator, used as a separator of multiple word forms, is also passed
inside a bracket, the algorithm would not split the text at this point, but first identify the
brackets in the text and then apply the segmentation operation. The option
first_form_only will yield only the first form of multiple potential forms, when
set to True. Normalization can be done with respect to whitespace (deleting and
unifying whitespace) and Unicode (where one would have to choose between NFD and
NFC). The option replacements allows to define a list consisting of tuples of source-
target strings, where the source string is what will be replaced and the target string is the
replacement.



List PyLexibank FormSpec

91

Having initialized the FormSpec by calling the class with particular parameters, one
can use it by calling its split-method with two arguments, the first argument being
always None when using it outside the context of CLDFBench, while the second
argument is the string one wants to manipulate. This is illustrated in the following
example.
>>> fs = FormSpec()
>>> for form in fs.split(None, "this, is; a (form)"):
... print(form)
this
is
a

4 Usage Examples

When dealing with the FormSpec, it is important to be aware about the order by which
actions are carried out when using the functionality. In the following, we will go through
some examples that illustrate basic use-cases. We start with the handling of brackets,
which are – as I mentioned before – defined as a dictionary (opening bracket as a key,
closing bracket as the value). This allows us to define all kinds of potentially strange
brackets that could occur in one’s data.
>>> fs = FormSpec(brackets={"<": ">", "{": "}"})
>>> fs.split(None, "this <really?>, is, an {example}")
['this', 'is', 'an']

The missing_data argument allows you to specify any string that could occur as
missing data. The FormSpec generally assumes that whitespace to the left or the right
of the string will be stripped.

>>> fs = FormSpec(missing_data=("???", "?"))
>>> fs.split(None, "???, really,?, ")
['really']

For separators, there is a particular restriction that only single-character strings can
be used as a separator. Thus, passing a string of more than one character will throw an
error. Depending on the data, however, one can find workarounds that would
nevertheless allow us to separate even strings where multiple characters have been used
as a separator. As an example, consider the following output, where three slashes have
been used as a separator.



CALCiP Volume 8, Number 2

92

>>> fs = FormSpec(separators=(',', ';', '/'))
>>> fs.split(None, "hallo /// welt / hier / bin ////
ich")
['hallo', 'welt', 'hier', 'bin', 'ich']

According to the way in which FormSpec works, the internal splitting process will
only return those forms that consist of at least one character that is not a whitespace
character. The FormSpec splits the string in the example into 10 different forms, but
only five are returned, since they are note empty.
If you want to use the option to replace strings by other strings during the form

conversion with the FormSpec, it is important to keep in mind that the replacement is
carried out after all splitting operations have been carried out. This limits the
possibilities of application, on the one hand, but it also reduces complexity, since the
replacements are quite restricted and they do not interfere with the process of splitting
a string into several forms. As an example, consider the following lines, where the
replacement of the string /x/ to the string / is not carried out, given that / is also defined
as a character that triggers the string to be split into parts.
>>> fs = FormSpec(
... separators=(',', ';', '/'),
... replacements=[('/x/', '/')]
... )
>>> fs.split(None, "hallo /// welt / hier / bin /x/ ich")
['hallo', 'welt', 'hier', 'bin', 'x', 'ich']

5 Outlook

Although the FormSpec is based on a limited number of options, the functionality has
proven very useful in practice, especially when populating the Lexibank repository
(Blum et al. 2025). It seems that the decision to limit the scope of the method to a very
dedicated range of options, deciding, among others, against the possibility to apply
regular expressions, was helpful, given that the results triggered by the current
FormSpec can still be easily understood when considering input and output strings.
With more complex operations, we would quickly loose the possibility to trace
individual decisions made in the code we used to convert raw data into standardized
CLDF data points.



List PyLexibank FormSpec

93

References

Blum, Frederic, Carlos Barrientos, Johannes Englisch, Robert Forkel, Simon J. Greenhill, Christoph Rzymski, and Johann-
Mattis List. 2025. “Lexibank 2: Pre-Computed Features for Large-Scale Lexical Data [version 2; peer review: 3
approved].” Open Research Europe 5 (126): 1–24. https://doi.org/https://doi.org/10.12688/openreseurope.20216.2.

Forkel, Robert, Simon J Greenhill, Hans-Jörg Bibiko, Christoph Rzymski, Tiago Tresoldi, and Johann-Mattis List. 2021.
PyLexibank. The Python Curation Library for Lexibank [Software Library, Version 2.8.2]. Geneva: Zenodo.
https://doi.org/10.5281/zenodo.2630582.

Forkel, Robert, and Johann-Mattis List. 2020. “CLDFBench. Give Your Cross-Linguistic Data a Lift.” In Proceedings of
the Twelfth International Conference on Language Resources and Evaluation, 6997–7004. Luxembourg: European
Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf.

Forkel, Robert, Johann-Mattis List, Simon J. Greenhill, Christoph Rzymski, Sebastian Bank, Michael Cysouw, Harald
Hammarström, Martin Haspelmath, Gereon A. Kaiping, and Russell D. Gray. 2018. “Cross-Linguistic Data Formats,
Advancing Data Sharing and Re-Use in Comparative Linguistics.” Scientific Data 5 (180205): 1–10.
https://doi.org/10.1038/sdata.2018.205.

Gévaudan, Paul. 2007. Typologie Des Lexikalischen Wandels: Bedeutungswandel, Wortbildung Und Entlehnung Am
Beispiel Der Romanischen Sprachen. Tübingen: Stauffenburg.

List, Johann-Mattis. 2014. Sequence Comparison in Historical Linguistics. Düsseldorf: Düsseldorf University Press.
https://doi.org/10.1515/9783110720082.

List, Johann-Mattis, Michael Cysouw, and Robert Forkel. 2016. “Concepticon. A Resource for the Linking of Concept
Lists.” In Proceedings of the Tenth International Conference on Language Resources and Evaluation, edited by Nicoletta
Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis, 2393–2400. Luxembourg: European Language Resources
Association (ELRA). https://aclanthology.org/L16-1379/.

List, Johann-Mattis, Robert Forkel, Simon J. Greenhill, Christoph Rzymski, Johannes Englisch, and Russell D. Gray. 2022.
“Lexibank, a Public Repository of Standardized Wordlists with Computed Phonological and Lexical Features.”
Scientific Data 9 (316): 1–31. https://doi.org/10.1038/s41597-022-01432-0.

Moran, Steven, and Michael Cysouw. 2018. The Unicode Cookbook for Linguists: Managing Writing Systems Using
Orthography Profiles. Berlin: Language Science Press. https://langsci-press.org/catalog/book/176.

Funding Information
This project has received funding from the European Research Council (ERC) under the European Union's Horizon Europe
research and innovation programme (Grant agreement No. 101044282). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

https://doi.org/10.12688/openreseurope.20216.2
https://doi.org/10.5281/zenodo.2630582
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.864.pdf
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.1515/9783110720082
https://aclanthology.org/L16-1379/
https://doi.org/10.1038/s41597-022-01432-0
https://langsci-press.org/catalog/book/176
https://doi.org/10.3030/101044282

	Manipulating Lexical Forms with the PyLexibank FormSpec


	1 Introduction


	2 Background


	3 Getting Started with the PyLexibank FormSpec


	4 Usage Examples


	5 Outlook


	References




