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Pitch plays an important role in many linguistic systems. It is the primary set of features
which determine vowel quality distinctions as well as forming the basis for intonation and
contrastive tone systems. Unfortunately, much of the literature has relied on approaches to
presenting and analysing pitch data that can result in a lack of data transparency,
reproducibility, and analytical robustness. These issues are easily solved through the
selection of a more appropriate scale for pitch values. This study presents the issues with
using raw pitch data as Hertz values some historical efforts to resolve these issues, and two
more appropriate solutions than some of the more widely used systems, with a way to easily
calculate these alternative systems in a short Python script.

1 Introduction

A common issue seen in the literature on pitch is the representation of raw pitch data in
Hertz values (hereafter Hz) as well as the use of Hz as the basis for analysing features.
This is especially important when comparing between languages or speakers, where a
certain degree of normalisation is likely necessary. There are a number of reasons why
using raw Hz values is something to be avoided in many cases. In this study we will go
over some of the important features of pitch as a meaningful linguistic marker, as well
as past efforts to resolve issues around using Hz by coming up with a more
psychoacoustically relevant scale. We will also discuss why it is important to always still
include raw data in Hz for the sake of experimental reproducibility, but also bring into
question the appropriateness of using Hz as the basis for making arguments around or
descriptions of some of the features for which pitch is so fundamental.

These issues around selecting appropriate scales when dealing with pitch are a
common concern when dealing with linguistic description for systems such as
intonational patterns, lexical tone systems, and vowel quality differences or vocalic
inventories. Whether looking at cross-linguistic comparisons for typological studies or
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language-internal systems, considerations around the handling of pitch data are of great
importance to ensure good science. It is still common for modern publications to present
data solely based on pitch, or worse yet relying on scales developed on unsound
methodologies. Thus we will look at a comparison of different scales used frequently in
the literature, explain why Semitones or log-z Scores are preferable, and then look at
how to calculate these programmatically from pitch data.

2 Psychoacoustic Pitch Perception

2.1 Hz as the Ground Truth

When investigating any linguistic feature reliant on pitch, values in Hz are always the
starting point. Vowel charts are simply visualisations of relative pitch values of vowel
formants, at least for F1 and F2, which are underlyingly Hz values. Tone and intonation
data are pitch values of the fundamental frequency, otherwise known as F0. All
information which can be gleaned from a spectrogram is made up of pitch values in Hz,
regardless of whether we’re looking at the time domain waveform or frequency domain
spectrogram. It is the raw data, reflecting the physical properties of sound waves moving
through the air.

For the sake of openness of data, Hz should always be included as supplementary
material. It is the bare minimum for being able to reproduce results. However, using Hz
values for the representations of pitch data is almost never appropriate. Nor is it usually
appropriate for analysis of the data, especially when we are dealing with more than one
speaker.

2.2 Over-Reliance on Hz in Analysis and Presentation

There are a couple of reasons for Hz being less than ideal. The first is that we simply do
not interpret pitch psychoacoustically in Hz. Hz is a linear scale, but human pitch
perception instead operates logarithmically. The higher the pitch range, the less
significant an otherwise equivalent difference in Hz will be. A 5Hz difference may be
either readily identifiable to a human listener as a distinct pitch, or entirely
imperceptible. The difference is dependent on where that 5Hz change occurs on the full
range of frequencies the human ear can detect.

Taking as an example a synthesiser keyboard tuned as 12 equal temperament where
the octave is divided into equal parts, a change of 5Hz in the lower octaves could be a
full semitone. This is the difference between E₂ (at 82.41Hz) to F₂ (87.31Hz). As we go
higher, the difference doubles with each octave. From E₅ to F₅, the difference between
the notes will instead be almost 40Hz, going from 659.25Hz to 698.45Hz. To our ears
and brains, these two differences — 5Hz in one case and 40 in the next — are
perceptually the same.
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To reliably present pitch data, we must take into account where in the audible pitch
range our target pitch occurs. Saying that a certain tone falls some number of Hz over
the duration of the tone-bearing unit — that is, the part of the morpheme or word which
carries the significant pitch of the toneme or tonal phoneme— is ultimately meaningless
if we don’t otherwise knowmore information including the speakers baseline pitch range,
where this falls relative to other speakers, and a number of other speaker-specific
features such as whether they tend to use their full range or not. When presenting pitch
data from a single speaker, Hz might be an easy approach, but it loses much of the
important information. Furthermore, to describe pitch values across speakers based on
simply averaging Hz values, we are failing to capture what may actually be occurring as
it is meaningful to the speaker and listener.

For example, imagine two speakers, who we will call Speaker A and Speaker B. In this
exercise, we imagine that Speaker A has a low pitch range relative to the average, and
also tends to use less of it than others. Speaker B has a higher than average pitch range,
and also makes use of nearly all of it in casual speech. Their Hz values are not
comparable. Speaker B will easily have massive changes in Hz from moment to moment
compared to Speaker A. Even if the two speakers used most of their range, we’d still see
much larger changes with speaker B since they are operating at a much higher average
pitch, meaning a perceptually identical fall in tone could still be multiple times greater
for Speaker B than A. This is why speaker data should never just be averaged. Instead,
we need to normalise the data. In this case normalising means making their ranges and
values statistically equivalent in order to get to the underlying pitch representation as it
may occur in their brains. There are a number of ways to do this. First, let’s look at the
problem of scales.

3 Efforts To Correct the Shortcomings of Hz

Recognising the mismatch between human pitch perception and Hz, a number of
attempts have been made to come up with more psychoacoustically appropriate scales.
In this section, the most commonly used scales will be presented and analysed. Note that
many of these occur as built-in scales for much of the available audio-processing and
speech acoustics software, including Praat (Boersma & Weenink 2024) and Audacity.

3.1 Mel Scale

One of the more notable early efforts which is still seen today was that of Stevens et al
(1937), revised in Stevens & Volkmann (1940) who attempted to come up with what
they referred to as a “sense-distance”, being a more accurate representation of human
pitch perception. Their experiment consisted of a keyboard with 20 keys. The pitch
produced by each key could be independently tuned. Using just five of these keys, the
highest and lowest of the five were tuned to a specific value, and then participants were
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asked to tune the intermediate steps to be of equal perceptual distances. The experiment
was done with three stages each with different overall pitch ranges. The lowest of these
three ranges was set to 40-1000batch for the first round of experimentation, then 200-
6500Hz for the second, and finally 3000-12000Hz. Only 10 participants took part in the
experiment, and their results varied considerably. The experimenters then averaged out
the values at which each speaker divided the pitch range, and this became the mel scale,
"mel" being short for "melody".

The main issue with the mel scale is that there is not a formula that accurately captures
the results. Fant (1968) proposed the following:

𝑚 = 1000 ⋅
𝑙𝑜𝑔ₑ(1 + 𝑥ᵢ

1000)

𝑙𝑜𝑔ₑ2

Here xᵢ refers to the target pitch which we wand to convert to mels and m is the resulting
value. The value of 1000 occurs here as 1000 Hz was linked to 1000 mels in the original
proposal, and so is in the formula setting the baseline. O’Shaughnessy (1987) presented
an alternative formula, producing slightly different values.

𝑚 = 1127 ⋅  𝑙𝑜𝑔ₑ(1 +  𝑥ᵢ
700

)

= 2585 ⋅  𝑙𝑜𝑔₁₀(1 + 𝑥ᵢ
700 )

Additional formulae have been attempted as well, each differing slightly. Since the
experiment to determine the mel scale had so few participants and the values determined
by the participants are not easily captured in a straightforward formula. What’s more,
the mel scale is logarithmic at higher frequencies, but a linear scale at low frequencies.
Since it was intended originally for melodic pitch (hence the “mel” in the name), the
pitch ranges used were often considerably higher than those occurring in speech, and at
the lower ranges where human speech occurs, it is not any real improvement over just
using Hz. Fant (1968) put this change from linear to logarithmic at 1000Hz, well above
human pitch ranges for F0. Makhoul & Cosell (1976) instead placed the changeover at
700Hz, again well above a normal F0 value. At 700Hz the scale might be useful for vowel
formant frequencies, were it not already based on such a small participant size with such
inconsistent values. For these reasons mel as a scale is better off avoided.

3.2 Bark Scale

Another commonly used scale is the Bark scale (Zwicker 1961), developed in an attempt
to improve upon the mel scale to better capture human pitch perception while still closely
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following the mel scale, where one Bark is approximately 100 mels. The Bark scale was
based on the idea of critical bands, a proposed explanation of audio processing involving
fixed frequency ranges which affect our ability to discern different pitches.

It is an effort to explain auditory masking, where a louder sound may completely mask
out our perception of a quieter sound that is close in pitch, even if they would be
discernibly different otherwise. Critical band theory is rather coarse, providing a simple
model to explain some features of auditory processing. As with the mel scale, multiple
formulae have been presented, each with differing results.

The most complex of these is that of Traunmüller (1990) where first an intermediate
value is calculated as r = 25.81 𝑥ᵢ

1960 + 𝑥ᵢ − 0.53. As above, 𝑥ᵢ refers to our target value in Hz.
Then, if the resulting value, here r, is less than 2, the Bark value is r+0.51(2−r). If the
value instead is larger than 20.1, then the Bark value is r+0.22(r−20.1), and if it is in
between 2 and 20.1 then the Bark value is simply the original r. The inconsistency in
values between different formulae — not to mention the complexity of that in
Traunmüller (1990) — should be enough of an indicator that a scale still largely based
on mels is again not the answer. While the Bark scale still regularly occurs in descriptions
of pitch systems, there are better options.

3.3 Equivalent Rectangular Bandwidth (ERB)

The final scale presented here which is still discouraged is the ERB scale. Like the Bark
scale, it is based on critical band theory and assumes human acoustic processing is built
on a series of band-pass filters. It is also based on the assumption that these critical bands
have a physical reality, being equal distances across the cochlear basilar membrane. It
was first developed in Greenwood (1961) and built upon in Glasberg and Moore (1990).
The formula for ERB from Hz is ERB(𝑥ᵢ)=24.7⋅(0.00437⋅𝑥ᵢ+1). ERB like Hz is still a
linear scale, however, and so will not be an accurate reflection of human pitch perception.
This brings us finally to better alternatives.

4 Better Options

As we have seen, many of these scales have considerable shortcomings. There are
fortunately better options available to us. Most significant among these are Semitones
and logarithmic z-Scores. These two scales are discussed in the following sections,
although they are not the only options.

4.1 Semitones

Semitones provide a clean solution when investigating pitch data, especially for F0 tonal
or intonational data. Semitones can be understood as half-notes on a keyboard tuned to
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12 equal temperament, or put another way, 12 equal logarithmic divisions within an
octave, where each semitone to its previous step has a ratio of

12
2 to 1. A major benefit

of using semitones is that the octave on which it is based appears to be universal across
musical traditions: It is described in early Indian texts, as well as early Chinese
musicological texts (Chen 1988), and is a common feature in African musical traditions
(Kubik 2010).

It can be seen that for both male and female speakers semitones result in the
smallest replication error… Post hoc paired-samples t-tests revealed that most
between- scale differences were significant at the p < 0.01 level, with the
exception of the difference between semitones and ERB-rate for female speakers
which was significant only at p<0.05. The experiment suggests that a logarithmic
(st) or near logarithmic (ERB) scale best models intonational equivalence. (Nolan,
2003)

The calculation of semitones is also straightforward, 𝑠 = 12 ⋅ 𝑙𝑜𝑔₂( 𝑥ᵢ
𝑦 ). Here, s is our

semitone value, xᵢ is again our target value in Hz, and y is a pitch value in Hz to set as the
baseline value of 0 semitones. Jitwiriyanont (2014) calculated semitones based on the
minimum pitch value of the speaker, ensuring that the lowest value would be 0. This has
a major drawback in that creaky phonation— a common feature of Southeast Asian tone
systems— will result in artificially low pitch values when using tools such as Praat to get
pitch. An additional problem is that the lowest pitch across tokens may only occur in a
single token, thus your more typical lowest value may be slightly above 0 semitones. Fant
(2006) instead suggests 100Hz as the 0 semitone baseline, which helps filter out outliers
caused by creak. This is not an ideal solution, since 100Hz will anyway be arbitrary when
considering any given speaker; some may have pitch ranges which are often considerably
above 100Hz while other speakers may tend to be below this value.

A better option would be instead to calculate the 0 point at the mean pitch value of the
speaker’s total pitch data across an entire session. It's better to limit to a single session
than the entire corpus for that speaker to help accommodate to session-dependent pitch
tendencies of the speaker, such as a lower overall mean when tired, or higher when
exited, or any other intra-speaker variations from session to session. Setting 0 semitones
to the mean Hz value does result in negative semitone values, something which some
people may wish to avoid, and a major reason for Jitwiriyanont (2014) using the
minimum, but by using the mean pitch value for the speaker, a first step toward cross-
speaker normalisation is done; if each speaker’s own mean is set to 0 semitones, then
speakers with vastly different mean pitches will still have semitone values that are largely
comparable. This is only a first step to normalisation, however, since semitones cannot

https://en.wikipedia.org/wiki/Student%27s_t-test
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account for differences in the speakers’ ranges, should that be something one also wishes
to normalise.

The semitone scale is not without criticisms, but they come from a very different place
than criticism of the mel, Bark or ERB scales. Instead, the main criticism of semitones
comes from its apparent foundation in Western musical traditions. Therefore among
some ethnomusicologists, an alternative is instead preferred, known as the Cent scale.
However, in every meaningful way it is identical to semitones, as the cent values are
simply the semitone values multiplied by 100 as the name may suggest. Thus 5.52
semitones would be exactly 552 cents. The benefit of semitones over cents in this case
is simply one of salience; people are much more likely to be familiar with the concept
of a half note over than a 0.005ᵗʰ note. The populiser of the system also stated that the
difference of a single cent would not be discernible should two notes be played in
succession (Ellis 1885). Thus, for most purposes where presenting data from a single
speaker, using semitones is recommended. It is salient as a concept and accurately
reflects psychoacoustic perception of pitch differences.

Semitones have one major shortcoming which is the inability for cross-speaker
normalisation when it comes to pitch ranges. When describing tone systems, vowel
formants, intonational tendencies, or anything else where the data are pitch values,
multiple speakers should ideally be consulted. And as mentioned, different speakers will
have entirely different ranges, whether that be in tone spaces or in how distant their vowel
formants may be from each other. As these values differ person to person, a better system
than semitones is probably needed. For that, there are logarithmic z-Scores.

4.2 Logarithmic z-Scores

Z-Scores are simply the values of data, in our case pitch data, relative to the mean and
presented in standard deviations. A z-Score of 1.0 is one standard deviation above the
mean, and -1.0 is one standard deviation below the mean. You can calculate z-Scores
from Hz directly, but this will still not solve the issue of Hz being a linear scale while
human pitch processing is logarithmic. Such z-Scores will also be linear, since they are
calculated from linear values. To solve this, we simply need to calculate the z-Scores not
from the Hz values, but from something like semitones which are already logarithmic.
For this reason, it is recommended that even if you are only using log z-Scores for your
data presentation and analysis, converting Hz to semitones first may have some real
value, and as we will see below this is easy to do. Furthermore, for the average reader,
semitones may still be more salient as a descriptive device than standard deviations from
the mean anyway, so this is the process we will take in calculating values below.

The main benefit of log z-Scores is that we not only normalise the pitch values across
speakers, but also the pitch ranges. Imagine we are creating a vowel plot for a given
language. In addition to pitch differences inherent to the anatomy of the speakers, some

https://en.wikipedia.org/wiki/Alexander_John_Ellis
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speakers may have a much smaller frequency space for vowel formants. We can easily
imagine one speaker who has a higher low-vowel tongue height relative to the high
vowels, as compared to other speakers. Were we to simply average all of the speakers’
data for a given target vowel, these two major pitch differences (inherent pitch
difference plus smaller pitch range) would result in data that didn’t really show much of
anything meaningful. It might tell us something general, but it will be a less accurate
picture. Instead, the vowel plot can take into account both of these inter-speaker
differences by plotting not the Hz values of the formants, but the logarithmic z-Scores
of the values based on the mean pitch values for F1 and F2. This lets us better normalise
between Hz a speaker with a much shallower F1 range and one with considerably greater
differences in vowel heights.

The same benefit is achieved when dealing with tone. Speakers who have a smaller
tone space will not cause issues for a more language-wide description, as listeners already
adjust to individual differences. Logarithmic z-Scores provide an ideal means of
normalising any sort of pitch data across speakers, regardless of the type of pitch data
we are dealing with.

5 Calculating Semitones and Logarithmic z-Scores with Code

Above we have gone through some of the reasons why Hz values are not good for analysis
and presentations, some of the efforts to develop something better, and why semitones
and logarithmic z-Scores fit that bill. In this section, we will discuss how to take the raw
Hz values from software such as Praat and calculate the values we need. For the sake of
this discussion, we will be focusing solely on F0 values for lexical tones, but the same
can be done with semitone values. We focus on F0 simply to have less complicated data,
as we don’t need to worry about multiple formants at a time.

While there are different approaches for determining the time step settings in Praat,
for our purposes here we will set this to be view-dependent, with 11 steps. The reason
for using 11 steps is that it gives us the pitch value at 0% of the duration, and at every
10% after until and including 100% of the total duration. The pitch listing in Praat will
then give something like this, with time values in seconds in the first column and Hz
values in the second column:

Time_s F0_Hz
144.640339 195.700913
144.657444 193.733349
144.674549 190.020519
144.691654 186.412159
144.708759 184.221198
144.725865 183.369391
144.742970 180.900870
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Frustratingly, Praat gives the pitch data with three spaces between each column, rather
than 2 or 4 or a tab character, so spreadsheet software generally will not detect this as
any sort of tab-separated value. A Praat scripting tutorial is somewhat outside the scope
of this study, so we will leave it for now and assume we are starting with pitch values in
this format, written to individual files via a Praat script. At any rate, we will save a few
tokens of a single syllable word in the local ./data folder, and then later loop through
those in the Python script, described below.

Once we have the pitch data, we can write a simple Python script which will load the
data as a pandas dataframe (McKinney 2010), easily calculate the semitone and
logarithmic z-Score values based on the mean value of all samples, and then plot the
contours with matplotlib (Hunter 2007). That will be the end goal of this section.

5.1 Ensuring Clean Data

The first thing we’re going to do is check for bad pitch data. When exporting data from
Praat, if the TextGrid window is not correctly aligned, or if you have creaky phonation
or some other feature that causes the software to be unable to reliably detect pitch data,
you will end up with lines which have --undefined-- rather than time and pitch data.
We obviously do not want that, since it will prevent us from being able to calculate the
data correctly. Thus, first ensure that no such lines occur in the data. Once this is done
we’re able to continue on, assuming that we don’t have any bad pitch lists.

5.2 Creating the Dataframe and Loading the Data

We’re going to use two important packages here. The first is pandas, a Python package
for handling dataframes. Pandas is an excellent tool for this purpose and it lets us in a
single line of code generate the additional columns we need based on dataframe-wide
values, such as an overall mean pitch value. We also need the math package for some
functions we will use, and matplotlib for the plot.

import numpy as np
from scipy.interpolate import make_interp_spline
import pandas
import math
import matplotlib.pyplot as plt
from pathlib import Path

filelist = list(Path("./data/").glob("*"))
for filename in filelist:

data = pandas.read_csv(filename, sep=" ", engine="python")

https://pandas.pydata.org/
https://matplotlib.org/
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We load the file directly as a data frame here, setting the separator to the three spaces
that Praat uses. Setting the engine flag to python suppresses some complaints about an
unusual separator, i.e. our three spaces. We can of course have our Praat script instead
generate the file with a comma or tab character and not need to set the engine, but we’ll
stick to their default here so that this is able to handle direct saves of Praat data.

5.3 Adding New Scale Columns

Now we calculate local semitones. We're calling this “local” because we are not taking
into account the entire set of tokens which our analysis may be considering. This is fine,
since we’re anyway dealing with only one speaker here. If we were to handle multiple
speaker’s data, we would want to also have a separate dataframe set up to hold every
token for each speaker which we can then calculate means by.

data["Semitones"] = 12 * data["F0_Hz"].apply(
lambda x: math.log(x / data["F0_Hz"].mean(), 2))

This part of the code is the main reason to use pandas in our case. Assigning the
column values with the .mean() and .std() functions mean we do not need to do any
additional calculation, and can handle it in a single line of code. If we wanted to also
include cents, pandas again makes this easy as we can create a new column based on the
values of another column in the same row.

data["Cents"] = round(data["Semitones"] * 100).astype(int)

Getting the z-Score is equally simple.

data["ZScore"] = (
data["Semitones"] - data["Semitones"].mean()) / data["Semitones"].std()

Note again we are calculating it based on the semitones value, ensuring that we are
ending up with a logarithmic z-Score rather than a linear one. We again rely on .mean()
and .std(). Effectively one line of code calculates the semitones based on the mean for
the entire dataframe, and one line of code does the same for the log z-Score, with no need
to write loops or other data handling methods.

5.4 Normalising Durational Data

The other thing we want to do is get a local time value for each sample by subtracting the
lowers time value from all time values for that token. This is useful because it allows us
to conduct duration-normalised analysis, which can be especially useful when creating
simpler visualisations of tone data. We already have the original Time_s value directly
from the Praat ouput. This is the time in seconds but from the position in the entire audio
file from which the data came. We’d like to create a new column where we subtract the
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minimum value from each of these values, so that we end up with an eventual time axis
that starts at 0.0 seconds. This is in a new column so that we don't lose any of the original
data. We’ll call this Time, leaving Time_s as the original values.

data["Time"] = data["Time_s"] - data["Time_s"].min()

By creating this new column, it’s easier to plot the values all starting at the same place
and either show them without duration normalisation, so that the x-axis value is the time
in seconds, or with duration normalisation where each sample is another 10% of the way
along the x-axis. If we print the dataframe now, we should see this.

Time_s F0_Hz Semitones Cents ZScore Time
0 148.392882 213.270192 1.831682 183 0.966044 0.000000
1 148.413310 214.782037 1.953974 195 1.027084 0.020428
2 148.433739 213.038641 1.812876 181 0.956657 0.040857
3 148.454168 210.669344 1.619259 162 0.860016 0.061286
4 148.474597 205.821561 1.216224 122 0.658847 0.081715
5 148.495025 198.473559 0.586856 59 0.344708 0.102143
6 148.515454 187.811133 -0.369115 -37 -0.132450 0.122572
7 148.535883 174.942274 -1.597958 -160 -0.745808 0.143001
8 148.556311 167.902131 -2.309059 -231 -1.100743 0.163429
9 148.576740 162.450427 -2.880511 -288 -1.385974 0.183858
10 148.597169 161.281436 -3.005541 -301 -1.448381 0.204287

Here we have our original two columns, Time_s and F0_Hz, as well as a few others.
First, the converted Semitones values, where 0 is set to the mean pitch value in Hz. Then
Cents, which is an integer and corresponds to semitones. The ZScore column is based on
the semitone values and so will already be logarithmic. Then finally, the Time column
always starts at 0 for each token, allowing us to use that as the x-axis value for seconds,
or use the index of the row multiplied by 0.1 as a percent value. Note the formatting of
this printed value will be different from our original file since this is a printed pandas
dataframe. This is what we wanted, but there’s one more thing we need to do.
5.5 Calibrating Values Across Tokens

All of the values are being calculated locally to the token. In this case all of our tokens
are of the same word and therefore the same toneme, but what if we wanted to compare
different tonemes? A high-to-mid falling tone and a mid-to-low falling tone would be
indiscernible the way we’ve done it. So instead, we need to calculate the z-Score globally
rather than locally.

To do this, first we’re going to initialise a second dataframe just before our for loop:

all_data = pd.DataFrame()
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Also before the for loop, we’ll add another loop simply to concatenate all of the data
files to that new dataframe called all_data. We’re calculating semitones here, which
means doing it twice overall, as a way to ensure we have a global logarithmic scale from
which to calculate the z-Score.

for filename in filelist:
data = pandas.read_csv(filename , sep=" ", engine="python")
data["Semitones"] = 12 * data["F0_Hz"].apply(

lambda x: math.log(x / data["F0_Hz"].mean(), 2)
)
all_data = pandas.concat([all_data, data], ignore_index=True)

Then, we can modify the line where we create the ZScore column to instead refer to
the all_data dataframe:

data["ZScore"] = (data["Semitones"]
- all_data["Semitones"].mean()) / all_data["Semitones"].std()

This gets us a slightly different version of the data from our first token in that the z-
Scores are now calculated globally, while none of the other values will have changed:

Time_s F0_Hz Semitones Cents ZScore Time
0 148.392882 213.270192 1.831682 183 1.444356 0.000000
1 148.413310 214.782037 1.953974 195 1.538367 0.020428
2 148.433739 213.038641 1.812876 181 1.429899 0.040857
3 148.454168 210.669344 1.619259 162 1.281058 0.061286
4 148.474597 205.821561 1.216224 122 0.971229 0.081715
5 148.495025 198.473559 0.586856 59 0.487409 0.102143
6 148.515454 187.811133 -0.369115 -37 -0.247483 0.122572
7 148.535883 174.942274 -1.597958 -160 -1.192143 0.143001
8 148.556311 167.902131 -2.309059 -231 -1.738794 0.163429
9 148.576740 162.450427 -2.880511 -288 -2.178092 0.183858
10 148.597169 161.281436 -3.005541 -301 -2.274207 0.204287

Note that the z-Score of the first row has changed from 0.966044 to 1.444356 once
we made it calculate the values based on the global rather than local mean. This is what
we want, because it means now if we have multiple tonemes, we can see the correct
values. However, if we were only looking at a single toneme, it might make sense to keep
the z-Score as being based on local values. That’s not something we would usually want
to do, but there may be reasons to do so.
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5.6 Wrapping up & Plotting the Data

The final code so far looks like this:

import pandas
import math
import matplotlib.pyplot as plt
from pathlib import Path

filelist = Path().glob("./data/*")
all_data = pandas.DataFrame()

for filename in filelist:
data = pandas.read_csv(filename , sep=" ", engine="python")
data["Semitones"] = 12 * data["F0_Hz"].apply(

lambda x: math.log(x / data["F0_Hz"].mean(), 2)
)
all_data = pandas.concat([all_data, data], ignore_index=True)

for filename in filelist:
data = pandas.read_csv(filename , sep=" ", engine="python")
data["Semitones"] = 12 * data["F0_Hz"].apply(

lambda x: math.log(x / data["F0_Hz"].mean(), 2)
)
data["Cents"] = round(data["Semitones"] * 100).astype(int)
data["ZScore"] = (

data["Semitones"] - all_data["Semitones"].mean()) /
all_data["Semitones"].std()

data["Time"] = data["Time_s"] - data["Time_s"].min()

The last thing to do is plot the values. So first, we instantiate the plot before the final
for loop.

plt.figure(figsize=(10, 6))

Then at the end of the final for loop, we need to save the data to the plot.

yscale = "ZScore"
x = np.linspace(data["Time"].min(), data"Time"].max(), 300)
spl = make_interp_spline(data["Time"], data[yscale], k=2)
y = spl(x)

plt.plot(x, y, label=filename)
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Finally, after the final for loop and at the end of the script, save the plot.

plt.title("log z-Score contours")
plt.xlabel("Time (s)")
plt.ylabel("z-Score")
plt.legend(loc="upper right", fontsize='small')
plt.grid(True)
plt.savefig("./plot.png", dpi=300)

This gives us a plot of the pitch contours, normalised for pitch using logarithmic z-
Scores. Our plot looks like this for the sample data:

Figure 1: Plot of tone contours for wai ‘bird’ in Wolam Khiamniungan
With pandas we could easily also keep track of the original filename and create

averages based on lexeme, or any other kind of useful data visualisation technique. And
nearly anything we would want to do would only require one or two lines of additional
code.

6 Conclusion

By using Semitones or logarithmic z-Scores we are able to draw meaningful conclusions
from our analysis which would not be available by relying solely on Hz. As human pitch
perception is ultimately logarithmic, we must be working in a logarithmic scale when
discussing how linguistic pitch occurs. By including Semitone values, we present a salient
system familiar to anyone who has even superficial experience with musicality, and by

https://glottolog.org/resource/languoid/id/wola1254
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including logarithmic z-Scores, we ensure cross-speaker normalisation can properly
account for differences in pitch space for the entire set of speakers whose speech we
may be investigating.

Importantly, whether discussing F0 contours of vowel formant data, work on linguistic
pitch should be based on openly available data in multiple formats. Hz values are a must
to ensure reproducibility, but are not sufficiently informative when it comes to
description or analysis. Ideally, the published data should include multiple scales in the
raw data. By including our semitone or log-Z values, we give additional transparency to
our methodology for the reader or those wishing to replicate our results. As shown above,
the calculation, visualisation, and creation of a multi-scale dataframe from the original
Hz values is made easy, thanks to widely used Python packages that require minimal
effort or programming knowledge.
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