
Computer-Assisted Language Comparison in Practice

Tutorials on Computational Approaches to the History and Diversity of Languages

Computer-Assisted Language Comparison in Practice
Volume 6, Number 2,65-72
URL: https://calc.hypotheses.org/6361/ DOI: 10.15475/calcip.2023.2.3
Published under a Creative Commons Attributions 4.0 LICENSE
Published on 27/09/2023

Sequence Manipulation
with Orthography
Profiles in JavaScript
Johann-Mattis List
DLCE / Chair of Multilingual Computational Linguistics
MPI-EVA / University of Passau

Orthography profiles allow for the explicit simultaneous segmentation and conversion of
sequences from one orthography to another. They play a crucial role in the standardization
workflows developed as part of the Cross-Linguistic Data Formats initiative, where they
are used to convert original orthographies used for language documentation to a strict
version of the International Phonetic Alphabet. Given that the basic algorithm by which
orthography profiles can be used to segment and convert sequences across orthographies
is very straightforward, it can be easily implemented in JavaScript.

1 Introduction

Orthography profiles (Moran and Cysouw 2018) are lookup and replacement tables that
can be used to convert sequences from one alphabet to another one. The conversion is
explicit and proceeds in two steps. Based on a replacement table that defines graphemes
in the source orthography (a grapheme representing a distinctive unit that consists of one
or more individual characters) and their counterparts in the target orthography, a
sequence is first segmented into graphemes, using a greedy strategy. In a second step, the
graphemes in the source orthography are replaced by their counterparts in the target
orthography.
Since they are straightforward to use and easy to apply computationally, orthography

profiles have come to play a major role in the standardization of multilingual wordlists
to Cross-Linguistic Data Formats (Forkel et al. 2018). Their role was specifically
important for the creation of the Lexibank repository (List et al. 2022), which uses the
Python implementation by Moran et al. (2022) in order to represent the orthographies
underlying individual wordlist collections by the standardized version of the International
Phonetic Alphabet proposed in the Cross-Linguistic Transcription Systems (CLTS)
reference catalog (Anderson et al. 2022, https://clts.clld.org).

https://doi.org/10.15475/calcip.2023.2.3
https://calc.hypotheses.org/6361/
https://digling.org/evobib/?bibtex=Moran2018
https://digling.org/evobib/?bibtex=Forkel2018a
https://digling.org/evobib/?bibtex=List2022e
https://digling.org/evobib/?bibtex=Segments
https://digling.org/evobib/?bibtex=CLTS

CALCiP Volume 6, Number 2

66

Given that the algorithm for orthography profile creation is very straightforward, I
have been experimenting for quite some time with JavaScript implementations, hoping
that I could use them in interactive web applications. I have recently started to revise my
old code and since the JavaScript implementation is rather short, I thought it might be
useful to share the full implementation along with comments on the reasoning behind it.

2 The Algorithm for Orthography Profile Conversion

To give a simple example for the way an orthography profile segments and converts
sequences, consider the orthography profile in Table 1 below, which defines a source
orthography consisting of 12 graphemes in the column Grapheme along with the
replacements given in the column IPA. While half of the graphemes consist of only one
character (a, e, i, p, t, and k), three graphemes consist of two ASCII characters (ph, th,
and kh), and three graphemes consist of two characters when applying Unicode NFD
normalization (see Moran and Cysouw 2018: 17), , i.e. the graphemes ā, ē, and ī can be
represented by a, e, and i combined with the the macron character ◌̄.

Grapheme IPAā aːē eːī iːa ae ei ip pt tk kph pʰth tʰkh kʰ

Table 1: A simple orthography profile for illustration purposes.

This orthography profile can be used to segment a sequence such as "khapā" into its
graphemes "kh a p ā". If graphmes have been identified, it is straightforward to convert
the sequence to its target sequence "kʰ a p aː" in the International Phonetic Alphabet.
The algorithm defined by Moran and Cysouw (2018) proceeds in a greedy fashion from
the left to the right. It starts by checking the longest potential grapheme, which would
be the whole word, and then checks if this segment occurs in the orthography profile. If
this is not the case, the next smaller segment is tested, which would be "khapa" in this
case (stripping of the macron from the sequence), followed by "khap", "kha", and finally
"kh", the first segment that we can indeed find in the orthography profile. Once such
a segment that occurs in the profile has been found, the algorithm takes the remaining

https://de.wikipedia.org/wiki/Normalisierung_(Unicode)
https://de.wikipedia.org/wiki/Normalisierung_(Unicode)

List Orthography Profiles in JS

67

sequence and proceeds in the same way (via "apā", "apa", "ap", "a"), and so on, until all
graphemes have been identified.
If single character units cannot be found in the orthography profile, they are treated

as an unknown grapheme. Thus, "khaupa" would be parsed as "kh a u p a", but the u
could not be converted to any existing character, which could, for example, be marked
by a question mark in the conversion process, resulting in "kh a ? p a".

3 Implementing Orthography Profiles in JavaScript

In order to implement orthography profiles in JavaScript (or any other programming
language), one should first decide on the basic format used to represent orthography
profiles. Since orthography profiles are “lookup tables”, that is, tables, where one needs
to look up individual segments, the easiest way to represent them in a script is to use a
hash table, better known as a dictionary in Python and JavaScript, as a data type. The
orthography profile shown in Table 1 can be represented in the form of a dictionary in
which the entries in the first column are used as a key and each row is represented itself
as a dictionary with column names as keys and cell content as values.

var profile = {"ā": {"Grapheme": "ā", "IPA": "aː"},"ē": {"Grapheme": "ē", "IPA": "eː"},"ī”: {"Grapheme": "ī", "IPA": "iː"},"a": {"Grapheme": "a", "IPA": "a"},"e": {"Grapheme": "e", "IPA": "e"},"i": {"Grapheme": "i", "IPA": "i"},"p": {"Grapheme": "p", "IPA": "p"},"t": {"Grapheme": "t", "IPA": "t"},"k": {"Grapheme": "k", "IPA": "k"},"ph": {"Grapheme": "ph", "IPA": "pʰ"},"th": {"Grapheme": "th", "IPA": "tʰ"},"kh": {"Grapheme": "kh", "IPA": "kʰ"}};
One may criticize this representation for being redundant, since the content of the

Grapheme column is repeated as key and as value, but the format has the advantage that
we can check if a graphem occurs in the orthography profile by using JavaScripts in
operator, while we can at the same time use the profile to convert from the original
grapheme to the target orthography by specifying the column name.
For the implementation, we follow the two-stage procedure outlined above, which

means that we define two functions, one that segments a sequence with an orthography
profile and one that converts a segmented sequence into another sequence with the help
of the orthography profile.

CALCiP Volume 6, Number 2

68

The first function, which I call segmentize takes as input the original sequence
(represented as a string) and the profile (represented as shown above). Before
segmenting the sequence, we make sure that the input string is normalized according to
Unicode NFD normalization, and we return the empty string inside an array if the word
itself is the empty string.

function segmentize(word, profile) {word = word.normalize('NFD');if (word.length == 0) {return [word];}...}
We now define basic variables that we will use throughout the function. First, there

is a queue that contains lists of three objects, the part that has been segmented at any
stage in the parsing process, the current segment that one tests against the orthography
profile, and the remaining rest of the sequence. Results are stored in the list called
segments, and the three elements of each item in the queue are called segmented, current,
and rest.

function segmentize(word, profile) {.../* define queue and output */var queue = [[[], word, '']];/* define variables */var segmented, current, rest;...}
We can now start with the main loop, which we implement as a while loop that stops

when the queue is empty. Upon each loop, we retrieve the already segmented parts, the
current suggestion for grapheme segmentation, and the rest of the sequence.

function segmentize(word, profile) {.../* main loop */while (queue.length > 0) {[segmented, current, rest] = queue.splice(0, 1)[0];...}}

List Orthography Profiles in JS

69

There are now four different conditions that we need to check. First, the “current”
part occurs in the profile and the rest is empty. In this case, we append the segment
represented by the variable current to the list of graphemes and the loop stops.

function segmentize(word, profile) {...while (queue.length > 0) {.../* A: check if the current segment occurs in the profile */if (current in profile && !(rest)) {return segmented.concat([current]);}...}}
Second, the current grapheme is of length one (and can therefore no longer shortened)

and does not occur in the profile. In this case, we check if the rest is not empty, and if
this is the case, we proceed, taking the rest as our current segment and adding the current
grapheme to the list of segmented graphemes. If the rest is empty, we add the grapheme
to the list of segmented graphemes and return the list.

function segmentize(word, profile) {...while (queue.length > 0) {.../* B: check for non-specified characters in profile */else if (current.length == 1 && !(current in profile)) {if (rest) {queue.push([segmented.concat([current]), rest, '']);}else {return segmented.concat([current]);}}...}}
Third, if the current character combination does not recur in the orthography profile,

we decrease it, by dropping the last character and assigning it to the remaining characers
in the queue.

CALCiP Volume 6, Number 2

70

function segmentize(word, profile) {...while (queue.length > 0) {.../* C: check for next smaller string */else if (!(current in profile)) {queue.push([segmented,current.slice(0, current.length-1),current[current.length-1] + rest]);}...}}
Fourth, if the current character combination is a grapheme in the profile, we add it to

the segmented entries and proceed with the rest of the sequence.

function segmentize(word, profile) {...while (queue.length > 0) {.../* D: if current in profile, proceed with rest */else {queue.push([segmented.concat([current]),rest,'']);}...}}
The output that this function yields is a list of strings which correspond to the

graphemes found or to individual characters that could not be identified to recur in the
orthography profile.
Once the segmentation has been carried out, the conversion is extremely easy to

manage, since all we have to do is to look for each grapheme if it finds a counterpart in
our orthography profile and yield the segment that is specified in the respective column
in our orthography profile. If segments cannot be identified, we place them in specific
quotation marks «».

List Orthography Profiles in JS

71

function convert(segments, profile, column){var output = [];var i;for (i=0; i<segments.length; i++) {if (segments[i] in profile) {output.push(profile[segments[i]][column]);}else {output.push('«' + segments[i] + '»');}}return output;}
These two small functions are all that is needed in order to carry out sequence

manipulation with orthography profiles in JavaScript.

4 Demo

In order to make it easier to follow my examples, I have made a very small application
that uses the scripts shown above and allows to type in a sequence and check how it is
segmented and converted at the same time. This application is supplemented with this
study and can also be accessed in the form of a JavaScript Fiddle (see
https://jsfiddle.net/LinguList/rkqcsa36/30/). The profile used in this demonstration is
identical with the one shown above, but long vowels are no longer represented with a
macron, but by duplicating the respective vowel instead.
By typing into the “output” field of the demo page, you can immediately see how the

string will be segmented step by step and how segments will be converted into the target
orthography. The advantage of this interactive representation, for which only a small
function was added to the script, is that one can see how orthography profiles work “in
action”. This in turn may be helpful for illustrative purposes (when teaching how to use
orthography profiles) and for the purpose of debugging existing profiles.

Figure 1: Orthography profile demo.

Figure 1 shows how the string "phaakottha" (that does not correspond to any word in
any language but was just typed for illustrational purposes) is first segmented to "ph aa
k o t th a" and then converted to "pʰ aː k «o» t tʰ a". Here, the grapheme o is missing from

https://jsfiddle.net/LinguList/rkqcsa36/30/

CALCiP Volume 6, Number 2

72

the profile and is not converted to any target grapheme accordingly, but rather marked
as something that the orthography profile does not handle.

5 Outlook

Having a JavaScript implementation of the string manipulation method using
orthography profiles at one’s disposal offers many additional interesting possibilities.
Apart from using it for interactive software demonstrations, an extended application
could be used to help in debugging orthography profiles, and the possibility to write
plugins in JavaScript for Spreadsheet solutions such as Google Sheets can even make it
possible to apply orthography profiles directly from spreadsheets.
The code described in this study is available online in the form of a JavaScript Fiddle

that can be found under the link https://jsfiddle.net/LinguList/rkqcsa36/30/.

References

List, Johann-Mattis and Anderson, Cormac and Tresoldi, Tiago and Forkel, Robert (2021): Cross-Linguistic Transcription
Systems. Version 2.1.0. Jena:Max Planck Institute for the Science of Human History. https://clts.clld.org

Forkel, Robert and List, Johann-Mattis and Greenhill, Simon J. and Rzymski, Christoph and Bank, Sebastian and Cysouw,
Michael and Hammarström, Harald and Haspelmath, Martin and Kaiping, Gereon A. and Gray, Russell D. (2018):
Cross-Linguistic Data Formats, advancing data sharing and re-use in comparative linguistics. Scientific Data 5.180205.
1-10. https://doi.org/10.1038/sdata.2018.205

List, Johann-Mattis and Forkel, Robert and Greenhill, Simon J. and Rzymski, Christoph and Englisch, Johannes and Gray,
Russell D. (2022): Lexibank, A public repository of standardized wordlists with computed phonological and lexical
features. Scientific Data 9.316. 1-31. https://doi.org/10.1038/s41597-022-01432-0

Moran, Steven and Cysouw, Michael (2018): The Unicode Cookbook for Linguists: Managing writing systems using
orthography profiles. Berlin:Language Science Press.

StevenMoran, Robert Forkel, Christoph Rzymski, and Johann-Mattis List (2022): Segments. Unicode Standard tokenization
routines and orthography profile segmentation [Software Library, Version 2.2.1]. Leipzig: Max Planck Institute for
Evolutionary Anthropology. https://pypi.org/project/segments

https://jsfiddle.net/LinguList/rkqcsa36/30/
https://clts.clld.org/
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.1038/s41597-022-01432-0
https://pypi.org/project/segments

